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Dense sets and Kroneker’s
theorem
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Among the problems that appear in mathematical olympiads, there
are problems that by one way or another are related to the approx-
imations of irrational numbers by rational ones. Such problems
directly lead to theorems of the theory of Diophantine approxima-
tions, such as the Kronecker theorem and Dirichlet theorem, and
to the concept of subset that is dense in a given set (a concept
important for understanding the fundamental properties of real
numbers). Thus, such problems, in addition to their competitive
olympiad assignments, become a cognitive stimulus.

In this note we present a short introduction to the topic mentioned
above with applications to olympiad problems.

2 Basic results

We begin stating some basic facts that will be used later on:

1. For every real number z and any integers m, n, it holds that
{n{mz}} = {nmz}. Indeed, {n{mz}} = {n(mx—|mz])} =

{nmz}.
2. For every irrational = and any integer n the number {nr} is
irrational. Suppose on the contrary that {nr} is rational; then

= M € Q (contradiction).
n
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3. For any real o > 0 there is a positive integer n such that
na > 1. (Archimedes’ Axiom)

Next, we state and prove some lemmas that will be used hereafter:

Lemma 1. Each interval (o, 8) with 8 — a > 1 contains at least
one integer number.

Proof. Denote n = |«a] + 1. Then, from |a] < a < n and
at+l< gitfollowsthata<n=|a|+1<a+1<g. O

Lemma 2. Let v be an irrational number such that 0 < v < 1.
Then, there exists a unique nonnegative integer k and an irrational
psuchthatkr+p=1and 0 < p < 7.

Proof. Let k = |1/7] and p = 7{1/7}. Then, from 1/7 = |[1/7]| +
{1/7} we immediately obtain kTt + p=1and 0 < p < T, where p
is nonzero bhecause 7 is irrational and integer k >0o0 nt

1110 o allso Livoliial ---vvc._,

that 0 < 7 < 1.
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Lemma 3. Let 0 be an irrational number. Then, for any positive
integer k, there exists a nonzero integer m such that {mé@} < 1/k,
where |m| < k.

Proof. First note that, since {m{0}} = {m 8}, we can WLOG
assume that 8 € (0,1). Consider the numbers x; = {i8}, where
1 <i<k+1. We claim that all of them are distinct. Indeed,
suppose that z; = x; for some i # j. Then, {i0} = {j0} or
10 — [10] = j@ — |jO] and 8(i — j) = |i0]| — |j€], from which we
get that

Since all these numbers are distinct then there are z; and x; such
that 0 < z; — z; < 1/k. In fact, assume the contrary and suppose
that |z; —z;| > 1/k forall i # j. Let y; < y2 < ... < yp41 be all
terms of the sequence zq,2,..., T, sorted in increasing order.
Since by assumption y;.1 —y; > 1/k forall 1 < ¢ < k, then we
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obtain

Yirr — Y1 = (Yet1 — Yu) + Wk — Y1) + oo+ (Y2 — y1)
1
>k.—>1.
- k

But this contradicts the fact that 0 < y; < yx+1 < 1. Since
w; —x; = {i0} — {j0} = (i0 — [i0]) — (46 — [48])
=0(i— j)— [i6] + [50]
and 0 < x; — x; < 1/k, then we obtain

r; —x; = {00 — j) — [i0] + [360]} = {00 — j)}.

So, {m8} < 1/k for m = i — j and |m| < k because —k =
1—(k+1)<i— j<(k+1)—1=k. [

Remark. Actually, it is not necessary to claim that 8 € (0,1). In-
deed, by Lemma 3, for any irrational 8 € (0,1) the number {0} €
(0,1) and there is an integer m # 0 such that {m{08}} < 1/k and

{m{6}} = {m8b}.

An immediate consequence of the preceding are the following corol-
laries.

Corollary 1. Let 0 be irrational and k be any positive integer.
Then, there exists a positive integer m such that {m8} < 1/k.

Proof. Suppose that the number m obtained in Lemma 3 is neg-
ative. Then, by Lemma 2, 1 = [ - {m0} + 0,, where | € N
and 0 < 8, < {m#}. Hence, 6, = {6,} = {1—-1-{mb}} =

{—l-mOB+1mb|} ={-1l-mb} = {m,0}, where m; = —Ilm > 0,
and since 0, < {m8} < 1/k we have now a positive m, such that

Corollary 2 (Dirihlet’s theorem). Let @ be an irrational number
and k be an arbitrary natural number. Then, there exist integers m
and l such that 1
mo — 1| < —
[m8 — 1] < -
and 0 < m < k.
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Proof. By Lemma 3 we have 0 < mf — 'ml] < 1/k —

lml — ml|| < 1/k <= ||m|0 — |m8] - sign(m)| < 1/k. Let
l = |m8] - sign(m), m = |m|. Then, we obtain |[m8 — 1| < 1/k
where 0 < m < k. O

Corollary 3. For any irrational 8 and any natural number k there
is arational r = l/m such that |6 —r| < 1/mk and 0 < m < k.

Corollary 4. Let 0 be an irrational number and € > 0 a real num-
ber. Then, the following inequalities have infinitely many solutions:

(@ {x-0} <e, x€N.
b) {z-0—yt<e, xzEN,y€EZ.

Proof. (a) The inequality {z - 8} < 1/k, where k € N and 1/k < e,
has at least one solution in N which is also a solution of {z-0} < e.
Suppose there is an € > 0 such that the set S of all natural

solutions of {x - 8} < € is finite. Then, § = min,cs{x -0} > 0

nnnnnnn Ol — N diranlicea O — 10 0V /0 £ MY and far +hi
lucuaubc 1..0 TU P = U LUIPUCS U = [\ U | /& T YW) allu 1ui LI1isS

0 the set {z | {z -0}} < §,z € N} is the empty set. But this
is a contradiction, because for any natural number k such that
1/k < 4, by Corollary 1, the inequality {z-8} < 1/k has a solution
in N.

(b) can be proved in a similar way. O

3 Kronecker theorem

We start recalling two definitions of a dense set.

e A proper subset A of the numerical set
for any real e > 0 and any = € X there
|z — a| < . (Approximation Form)

e If X = (p,q) and A ¢ (p,q) then it is easy to see that A is
dense in (p, q) if for any subinterval (o, 3) C (p,q) there is
a € A such that a < a < 3. (Interval form)

oo v oif
15C in X i

den
€ A such that

s "h
A IS
is a

If A C R is dense in R, we say that A is everywhere dense.

Using the preceding definitions we state and prove the following.
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Lemma 4. [f A C R is dense in R and T is a nonzero real number,
then  + A and T7A are dense in R.

Proof. Let (a,3) € R. Then, for the interval (a« — 7,3 — 7) there
isa € (a—7,8—7) <= a+ 7 € (a,08). and in the case
T > 0 for interval (a/7,8/7) there is a € (a/7,8/7) <+—
Ta € (o, B). If 7 < 0, then for the interval (3/7, a/7) there is
a € (B/r,a/T) <= Tac (o, ). H

Theorem 1 (Kronecker). The following hold.

(@) For any irrational number @, the set {{n0} | n € N} is dense
in (0,1).
(b) For any irrational number 0, the set {n@ +m |n € N,m € Z}
is everywhere dense (dense in R). That is, for any a € R and
e > 0 thereare n € N, m € Z such that |a — (n6 + m)| < €.
Progof. (a) Suppose that @ € (0,1). Then, we will prove that, for
any a, 3 € [0,1] and o < 3, there exists a natural number n such
that « < {nf} < B. By Corollary 1, there exists m € N such
that {m8} < B — a. Let 6 = {m@} and consider the sequence
{0,4,26,...,n6,...}. Since 3 — « > J, then 3/6 — a/6 > 1 and,
by Lemma 1, there is n € N such that

o B

5 <n< 5
from which it follows that a < nd < 8. Since né € (0,1), then
nd = {nd} = {n{mb} = {nmé} and for n := nm (Here, := is an
assigning operator. That is, n := nm means that the new value
of n is the old value of n multiplied by m), we get a < {nf} <
3. Let now @ be any irrational number. Then, 6, = 6 — 0]

is also irrational and, therefore, there exists n € N such that
a < {nb,} < Bora< {nd —n|8|} < B, from which it follows
that a < {né} < 8.

(b) First, we prove that, for any interval (a, 8), there exist m,n € N
such that ¢ < n@+m < 8. WLOG we may assume that §—a < 1.
Then, ({a},8 — |a]) C [0, 1] and, by (a), there exists n € N such
that {a} < {nf} < 8 — |a] or

{a} < {nb} + o] < B8 <= {a} < nb — |nb] + |a] < 6.
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Putting m = |a] — [n@] € Z, then we get « < nf@ +m < 3. Let a
be a real number. Then, for any € > 0, thereare n € Nand m € Z
suchthata —e<nf+m<a+eor|a— (nl+m) <e. ]

Now we will give another constructive proof of Kronecker’s theorem.
The next two lemmas correspond to part (a) of the theorem. Fur-
thermore, we also give an algorithm for finding n for any interval
(o, B) and e > 0 depending on the definition of density (interval or
approximation form).

Lemma 5. For any irrational number T € (0, 1) there is a natural
number k > 2 such that {kt} < 7/2.

Progf. For a given 7 we have the representation 1 = kor + 71,
where kg € Nand 0 < 73 < 7. If 0 < 4 < 7/2, then again
{because 7 is irrational and =, € (0,1)) we have 1 = k7 + 72,
where k; > 2 because m; < 1/2and 0 < 72 < 71 < 7/2. Therefore,
7o ={mn}={1—kn}={-kQ—kT)} = {kt} < 7/2, where
k=koks 22 If 7/2 <7, thenfrom -7 = {r—7} =
{m — 1+ kot} = {(ko + 1)7} it follows that {kT} < 7/2, where
k=ko+12>2. O

Lemma 6. Let 8 € (0,1) be an irrational number. Then, there is a
sequence of natural numbers n; < ny < ... < Ny < ... such that

{n0) < 0/2.

Progf. By Lemma 5, there exists a natural number k& > 2 such that
{k8} < 6/2. Let n; = k. Suppose that we already have n; < ny <
... < n; such that 8, = {n;0} < 0/2% for j = 1,2,...i. Applying
Lemma 5 to the irrationals 8; we obtain 8;., = {k;0,} < 6,/2 for
some natural k; > 2. But 6; < 6/2¢ and {k:z-Bi} = {ki{n;0}} =
{n,, Hl(ﬂ/?“‘l,“}herﬁ N, = k;n; > n;. ]

“LTL" 3 i TYET L h—

Corollary 5. Let @ € (0,1) and € > 0. Then, there exist infinitely
many positive integers n such that {n@} < e. More precisely, there

exists an increasing sequence of positive mtegers {nr}r>1 such that
€ > {n;ﬁ} and {’I'Lk,_|_10} < {nk,B}/2

Proof. For {n@}, there exists m > 2 such that
{mn0} = {m{nd}} < —— inby 5 }
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Then, for n, we get the integer ng,; = mn, > n; for which

Corollary 6. Let 8 € (0,1) be an irrational number. The set
{{nB} | n € N} is dense in (0,1). Moreover, for each interval
(a,3) C (0,1) there exist infinitely many positive integers x such
that o < {x8} < 3.

Proof. By the preceding results, there exists a positive integer m
such that {m@} < 3 — a. Then, the interval

a ]
\{m6} {m6}/

has length greater than 1 and contains a positive integer n. Namely,

a B

— — a < n{mb o nmé ,

{m9}< <{0}4:» <n{ml} <B=a<{ 1 <8
because from n{m8} € (0, 1) if follows that n{m08} = {n{mé}} =
{nm@}. For example, we may choose n = |a/{m8}] + 1. So, we
have a positive integer x = mn such that o < {x6} < 8 holds. By
the preceding result, there always exists a positive integer m’ > m
such that {m’6} < {m6}/2. Then, n’ = |a/{m’'0}] +1 > n.
Actually, n’ > 2n — 1 because

“ 1= L) 2 Lo | 22 | =200

Thus, we got another integer solution =’ = m'n’ > = of a <
{z8} < B and this process can be continued infinitely. So, starting

with m and n = |a/{m#}]| + 1we may construct an increasing
sequence of positive integers such that a < {8} < 3, as desired.
[]

For applications, it is often convenient to consider the following
interval form of Kronecker’s Theorem.

Corollary 7 (Kronecker). If 0 € (0,1) is irrational, then for any
interval (o, 3) C R there exist positive integers n,m such that
a<nl—m<g.
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Proof. Let (o, 3) C R. WLOG we may assume that |a] = |3].
Since ({a}, {8}) € (0,1), then {a} < {nf8} < {B} is satisfied for
n € N as big as we need. In particular, for n > (|a] + 1)/6. Then,

nd > |la| +1= [nl] 2> |a] +1<& [nl] — |a] > 1.
Let us denote by m = |nf] — |a], then we have
{a} < {nd} < {8} & a—|a] <nb—[nb] <3 - (8]

or « < nf — (|nf] — |a]) < B, from which it follows that a <

nd —m < 3. O
Y, | CQAarmnan nnmnnmliAanntiAana
x wUl1ll114C ayp.llbabll)l.lb

Problem 1. Prove that, for any positive integer M with k digits,
there is a natural number n such that the first k digits of 2™ are
precisely M .

Solution. On account of the statement of the problem, we have to
prove that there exists m € NU {0} such that

n
‘ ‘ M< — < M+1
L1o™ ] o
or
o < nlog m < log(M + 1)
logM < nlog2 1T < 10g(4iHvL — 1)

Since M has k digits, then |[logM| = k. Let a = {logM} =
logM — k and 8 = min{1 lno*(f\/l'-t—1\ —kl s0 (rv Fl\ C (ﬂ 1\_

‘‘‘‘‘ allll AR S9 2B

By the precedmg we know that there are 1nﬁn1te1y many natural
numbers such that {zlog2} < 8 — a. We choose n > k/log?2
with {nlog 2} < 8 — «. Then, the interval

({nlzg 2}’ {nlfg 2})
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has length greater that 1 and, consequently, contains a natural
number, say £. So, we have a < £{nlog2} < 3, or

logM < nlog2— (¢nlog2| — k) < B+ k <log(M +1).
Putting m := €|nlog 2] — k and n := £n, we obtain
log M < nlog2 —m < log(M + 1),
where n € N and m € NU {0}. O]

Problem 2. Prove thal there exists an irrational number 0 such
that the set

{20 | n € N}
is everywhere dense in [0,1).

Solution. First, we write the positive integers in the binary system
and we get

N = {1,10,11, 100,101,110, 111, 1000,...}.

Let 6 be the real number whose decimal figures are the natural
numbers written in binary notation. That is,

6 =0.110111001011101111000....

This number is irrational because its binary representation con-
tains zero segments of any length. This number also has the
following interesting property: For each number b = 0.3,8; ... Ok,
we can find a natural number which indicates the position in 0
from where the digits of b start a 8 segment of digits. Let £(b) be
the function that shows the least of starting positions of b. Thus,
if 8 =0.6,0,...0,,..., then

{2¢®0} = 0.818z - - . BrOetvy+ 11 - - -

Let « = 0.y ... ;... € (0,1) and let p be a positive integer.
Then, for
b=27?2°a] = 0.aqaz. ..,

the numbers a and {28} have the same first p digits a;, as, ..., a,.
Therefore,
|a —_ {2€(b)9}| = |0.ap+1ap+2 e e — 0'6£(b)+p+1 cee | < 2—p,

and the proof is complete. O
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Problem 3 (A. Ya. Dorogovtsev [2]). Prove that the sets A =
{vVn—vm | n,m € N} and B = {/n — /m | n,m € N} are

everywhere dense.

Solution. First, we will see that, for any real interval (a, b), there
exist two positive integers n, m such that a < v/n — v/m < b. Let
m be a positive integer such that e + v/m > 0. Then,

a<vn—+vm<b<e (a++vVm)’ <n<(b+v/m)
Now, we claim that (b + v/m)? — (a + v/m)? > 1. Indeed,

s — s — _ 1—a*+ b
b+ vm)P:—(a+vm)2>1les vm>-— 2 77
2(b—a)
Thiig far anv »om 2 N enirh that
1I1US, 101 ally 1 © 1Y Sulil ulat
1—a®+ b2
Vm>maX{_aa g s 1
( 2(6—a) )

by Lemma 1, there exists n € N such that (a + vm)? < n <
(b + +/m)?, and the set A is dense everywhere.

To prove that B is everywhere dense, we have to see that, for any
real interval (a, b), there exist two positive integers n, m such that
a < /n —+/m < b. Let n be a positive integer such that </n > b.
Then,

a<vn—vm<b<e— ({/n—->0>*<m< (n—a)
Now, we claim that (/n — a)? — (/n — b)? > 1. Indeed,

1—a®+b?
(Yn—a)—(Yn—-0°>1+<= In>
2(b—a)
Mhizo v aixr a3 7~ RN arxnrl s+
111UD, 101 dll L T 1Y SuCll Llldl
1—a’>+ b2
/1 > max<{b ,
vn { 2(b — a) }

by Lemma 1, there exists m € N such that (¥/n —b)? < m <
(v/n — a)?, and the set B is dense everywhere. O
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Problem 4 (Yu. S. Ochan [3]). Prove that the set {In(r?+1) | r €
Q} is dense in [0, +00).

Solution. Let (a,b) C [0, +0o0). We have that
a<In(z’+1)<b<=e*—1<z’<e’ -1
— Ver — 1< |z| < et —1.

Then, on account of Archimede’s Axiom there exists n € N such
that

By Lemma 1, for this n the interval (n vy
tams a natural number m. That is, n

or, equivalently,

Problem 5 (V. I. Bernik et al. [1]).

(a) Prove that the set {sinr | r € Q} is dense in [—1,1].
(b) Prove that {{logn} | n € N} is dense in (0, 1).

Solution. (a) Let (a,b) C [—1,1] and let a = arcsina and 3 =
arcsin b. By Archimede’s Axiom, there exists n € N such that
n(8 — a) > 1. Then, by Lemma 1, the interval (no, n@) contains
a natural number m. That is, na < m < n@ and a < m/n <

B. Since f(x) = sinx is increasing in [—x/2,7/2] and a,8 €
|'_4-1- /9 ‘n-/’)'| then we nohtain

(i) / ﬂ’ [A) ﬂJ '] b“\/*& VY W VR LOLLAL
- . m .
a=sina < sin— <sin3 = b,
n

and the set {sinn | n € N} is dense in [—1,1]. The preceding,
jointly with the fact that N C Q, imply that {sinr | r € Q} is dense
n [—1,1].

An alternative proof of (a) can be given by using the following.

Proposition 1. Let f be a continuous function on [a,b] and sup-
pose that f([a,b]) = [m,M]. If A C [a,b] is dense in [a, b], then
f(A) is dense in [m, M].
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Proof. Let q € [m, M| and suppose that f(p) = g for some p €
[a,b]. Then, for any ¢ > 0 there is § > 0 such that |z — p| < ¢
implies |f(x) — ¢| < €. Since A is dense in [a,b], thereis c € A
such that |¢ — p| < 4. Then, |f(c) — ¢g| < €, and this means that
f(A) is dense in [m, M]. O

Applying the above proposition to the function f(x) = sinx we get
that {sinn | n € N} is dense in [—1, 1]. Indeed,

P2 {2 (|2 () - sn(om ().

i I’£1 i Aaran 3 N 1Y 4+ O l/£1 o Aarae 3+ N O\ 524
WVILILC 127-:} 1> UCLLST 11l [u, 1) Llicll 4“12#} 1> UCLISC 11l [V, &7 ) dllu
{sinn | n € N} is dense in [—1,1].

MAYNT A+ D . OV Y 0 aom .- —~ R __ 1ol . — RY — A
D) LCL D — {1087ty | Tt — & 11 T Ny = {IN10g & | M < g _ A.

Since log 2 is irrational, then by Kronecker’s Theorem B is dense
in (0,1). This implies that A is dense in (0,1) because B C A. [J
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